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Abstract: Intravascular optical coherence tomography (IVOCT) can accurately assess stent
apposition and expansion, thus enabling the optimisation of a stenting procedure to minimize
the risk of device failure. This paper presents a deep convolutional based model for automatic
detection and segmentation of stent struts. The input of pseudo-3D images aggregated the
information from adjacent frames to refine the probability of strut detection. In addition,
multi-scale shortcut connections were implemented to minimize the loss of spatial resolution and
refine the segmentation of strut contours. After training, the model was independently tested in
21,363 cross-sectional images from 170 IVOCT image pullbacks. The proposed model obtained
excellent segmentation (0.907 Dice and 0.838 Jaccard) and detection metrics (0.943 precision,
0.940 recall and 0.936 F1-score), significantly better than conventional features-based algorithms.
This performance was robust and homogenous among IVOCT pullbacks with different sources of
acquisition (clinical centres, imaging operators, type of stent, time of acquisition and challenging
scenarios). In addition, excellent agreement between the model and a commercialized software
was observed in the quantification of clinically relevant parameters. In conclusion, the deep-
convolutional model can accurately detect stent struts in IVOCT images, thus enabling the
fully-automatic quantification of stent parameters in an extremely short time. It might facilitate
the application of quantitative IVOCT analysis in real-world clinical scenarios.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ischemic heart disease (IHD) is still today the first cause of mortality in the world, especially
in developed countries [1–3]. The vast majority of cases are due to atherosclerosis, a complex
systemic degenerative process resulting in cholesterol accumulation in the extra-cellular space of
the arterial intima, with inflammation, foam-cells formation, and necrosis [4–7]. The clinical
manifestations of coronary atherosclerosis comprise from stable angina, due to flow-limiting
stenosis of the artery, to acute myocardial infarction or sudden death, when the atheroma gets
complicated by thrombotic phenomena and occludes suddenly the vessel lumen [8]. Percutaneous
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coronary intervention (PCI) with implantation of stents has become the treatment of choice for
most cases of IHD in any clinical presentation [9]. However, the stent itself constitutes an insult
for the vascular tissue, eliciting a healing reaction that might result in stent failure. An excessive
vascular reaction, with excessive neointimal proliferation is the most common substrate for stent
restenosis, whilst an insufficient neointimalisation and reendothelialisation may trigger stent
thrombosis [10]. The optimisation of stent apposition and expansion during the implantation
plays a critical role to achieve a balanced neointimalisation [11] and thus to minimise the risk of
stent failure. Malapposition is associated with delayed neointimalisation [10,12,13], which is
one of the pathological substrates for stent thrombosis [14], whilst underexpansion is associated
with both restenosis [15–19] and stent thrombosis [20].

Intravascular optical coherence tomography (IVOCT) is an optical-based imaging modality
with high axial resolution (10-15µm) that enables in vivo assessment of both apposition and
expansion during the stent implantation, as direct monitoring of the vascular response and
neointimalisation at follow-up [11,21], thus opening for the first time interesting possibilities for
personalised medicine. Nonetheless, this assessment requires the accurate detection of all stent
struts in each cross-section and the outlining of lumen contour. Since current IVOCT systems
render multiple cross-sections (up to every 0.2mm, depending on rotation and pullback speeds),
with multiple struts each, this results in a prohibitive amount of measurements and information
per stent. If manually performed, IVOCT quantification becomes an extremely cumbersome and
time-consuming task, subject to considerable inter- and intra-observer variability [22], impossible
to undertake in real-time during the intervention for clinical decision-making.
Algorithms for automatic strut detection in metallic stents might expedite the quantification

process while improving its reproducibility, thus making possible its routine implementation to
optimise PCI and tailor the adjuvant treatment according to the patient’s needs and the principles
of precision Medicine. These algorithms take into account the characteristic appearance of stent
struts in IVOCT: since metal acts as a perfect reflector of near-infrared radiation, the intense
backscatter produces a thin bright line, perpendicular to the near-infrared beam; casting a shadow
in perfectly straight line from the emitting source, as a result of the complete attenuation of the
near-infrared radiation [11,21].
Most algorithms for automatic strut detection have focused on the A-lines hitherto, using

different approaches. Classification based on machine learning method was mostly used like:
classification using 4 parameters along the A-line (peak-intensity, presence of shadow, shadow
length and speed of intensity rise and fall) [23], bagged decision trees with 12 features of strut and
shadow [24], using the wavelet response of each strut, with feature extraction and classification
by means of probabilistic neural networks [25], detection of the brightest pixel along the A-line
and Prewitt compass filters to detect the trailing shadow and cluster the candidate pixels into
struts [26], Bayesian networks and graph search to compute the probability of strut, reinforced by
en-face views [27], covered or uncovered struts classification based on support vector machine
and uncovered strut clusters detection using mesh growing [28]. Deep learning algorithms was
also introduced in strut detection, in [29] artificial neural networks with one hidden layer and ten
nodes was used to classify the strut. All these A-line-based methods share some drawbacks: the
appearance of the struts may vary between different IVOCT systems (the manufacturer of OCT
machine, the dose of contrast agent, the type of vessels and the type of imaging catheters); in
addition, some artefacts like incomplete flushing or vascular structures like clots or neointimal
flaps may be mistaken as struts. Finally, focusing on the A-line limits the reception field of
detection, disregarding global and semantic information, like the consistency of the stent structure
in adjacent frames.
Profiting from the extraordinary ability of convolutional neural networks (CNN) for feature

extraction [30], we adopted CNN as the element method to extract features of stent struts
automatically from a large amount of training data. Considering the stent strut in IVOCT images
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as a region instead of a single point, we transformed the detection of struts into an issue of
image semantic segmentation. Following the principles of fully convolutional networks (FCN)
[31] and U-Net [32], with successful application in biomedical segmentation, we constructed a
deep convolutional model with similar hierarchical structures composed by encoder and decoder
parts. As differential features, we designed our own four basic modules with bigger capacity and
deeper layers. Pseudo-3D image inputs were adopted to aggregate consecutive information from
adjacent frames. Furthermore, to mitigate the impact of spatial information lost in the process
of feature extraction on tiny strut regions, multi-scale short connections were introduced in our
method, contrary to U-Net. We trained our models on over 10,000 cross-sections with proper
training strategy and optimal model fine-tuning. Testing of the model performance was carried
out on 153 post-PCI pullbacks from the DOCTORS clinical trial [33] and 17 follow-up pullbacks
from an core lab. We obtained satisfactory results with fast inference speed and significantly
better performance than conventional feature-based methods.

2. Materials

The image dataset to train our metallic stent strut segmentation models came from our academic
core lab (CardHemo, Med-X Research Institute, Shanghai Jiao Tong University). A total of 60
IVOCTpullbackswithmetallic stent implantedwere collected, comprising the threemain coronary
arteries: LAD, LCX and RCA. IVOCT pullbacks were acquired by the DragonflyTM catheter
using C7-XRTM or ILUMIEN OPTISTM FD-OCT systems (Abbott, St Paul, Minnesota, USA).
The IVOCT pullbacks contained the most commonly used stent platforms worldwide: Xience
(Abbott, St Paul, Minnesota, USA), Taxus Liberté (Boston Scientific), Resolute (Medtronic,
Santa Rosa, CA, USA), Promus (Boston Scientific) or Orsiro (Biotronik, Bülach, CH). In the
ILUMIEN OPTISTM system the rotation speed was 180 Hz and the pullback speed could be
18mm/sec (maximal scanned length 54mm) or 36mm/sec (maximal scanned length 75mm). In
the C7-XRTM, the rotation speed was 100Hz and all the pullbacks were performed at 20mm/sec
(maximal scanned length 54mm). Cross-sections corresponding to non-stented segments or
unacceptable image quality due to incomplete flushing or non-uniform rotational distortion
artefacts were excluded from the analysis, resulting in a total of 10,417 cross-sections and 93,059
struts finally analysed. All struts were manually labelled by three experienced IVOCT analysts in
the CardHemo core lab, using the ITK-SNAP software (version 3.8) [34]. And a senior analyst
performed the quality control before using these labelled data.

3. Image analysis and algorithms

Instead of defining features of strut and trailing shadow for classification, like in previous
approaches [23,24,26,27,29], we utilized deep convolutional network to extract automatically the
key features for stent struts. We took the U-shape network [32] as the basis for our segmentation
model and modified it to improve metallic stent segmentation in IVOCT. The designed model
was trained and inferenced both in an end-to-end manner. Polar images of IVOCT were fed to the
trained model and the output stent strut masks predicted by the trained model were reconstructed
back to Cartesian images.

3.1. Image preprocessing

3.1.1. Paired polar images and mask generation

The two discriminative features of metallic strut, bright spot and trailing shadow, appear differently
in Cartesian or polar views. In Cartesian view, struts are distributed around the lumen contour
and shadows follow a radial direction in straight line from the optical catheter. Conversely, in
polar view struts are distributed along the lumen contour and shadows follow the A-line as slim
bars, perfectly perpendicular to the optical catheter side. Compared with Cartesian images, the
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strut features in polar coordinates are invariant to the irregular shape of the lumen (e.g. due to
dissection or thrombosis) and less affected by artefacts and non-uniform rotational distortion.
This invariance is preferable for deep convolutional method, thus polar images were selected to be
the input of our models. Polar images were resized to 512×512 pixels to reduce the computation
consumption while keeping the features of struts. The mask paired with each image was present
in polar version and resized to 512× 512 pixels as well, as shown in Fig. 1(A).

Fig. 1. (A) Pseudo 3D consecutive polar slices to feed the stent strut segmentation model
as input. Paired polar image and manually labelled mask were generated. (B) The entire
model architecture designed for stent strut segmentation. This model was composed of
start module, six encode modules, six decode modules and end module, connected with
multi-scale shortcut connection. (C) The strut map predicted from the model. Position,
width and orientation of the struts were extracted in post-process for image reconstruction in
Cartesian view.

3.1.2. Image normalization

Since IVOCT images were acquired from different OCT systems and different operators and
exported with different settings, image quality and image intensity varied substantially among
different IVOCT pullbacks. Mean intensity value and standard deviation were calculated for each
polar cross-section. Then the polar image intensity was normalised by subtracting the mean
value and dividing it by the standard deviation, to homogenise the intensity distribution of all
images in the same range and reduce the variability intra-training of the dataset.

3.2. Metallic strut segmentation model

3.2.1. Module design and backbone architecture of model

Four basic modules were designed to compose the backbone architecture of our model: start
module, encode module (EM), decode module (DM) and end module. Analogous to most deep
learning methods tackling visual tasks, convolution operation (Conv) and batch normalization
(BN) were exploited as element layers in each module for features extraction and to lessen the
gradient vanishing in training, respectively [35,36].
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In the start module, one Conv-BN-ReLU element, and two Conv-BN [30,36], activated by
LeakyReLU [37], composed the sequential structure of the module, as structure shown in
Fig. 1(B) with red dashed box. Encode module was responsible for extracting features in different
scale-levels, from shallow spatial information to high semantic features. Dropout layer was
introduced in this module to avoid overfitting [38], then two Conv-BN-ReLU and one Conv-BN
were included (with 2 strides in the first convolution to up-sample the features and enlarge the
reception field). To accelerate the converging process of our model, we used residual connection
introduced by He et al., which demonstrated to be effective in training deep networks [39]
(green dashed box in Fig. 1(B)). Decode module was analogous to encode module, containing
residual connection, dropout and Conv-BN-ReLU elements. In addition, necessary adaptive
interpolation (up-sample or down-sample) and channel concatenating operation were needed
to recover the image resolution from the features in different scale-levels extracted via encode
modules, represented by the block enclosed by blue dashed box in Fig. 1(B). The last part was the
end module, this module outputs the prediction probability map activated by sigmoid layer after
Conv-BN-LeakyReLU and Conv-BN element (orange dashed box in Fig. 1(B)). High response
probability is expected be found in strut region (low probability in background) for a well-trained
model.
For the overall backbone architecture of our model, one start module, six encode modules,

corresponding six decode modules and one end module were sequentially contained. Original
polar images input first passed through the start module and generate the same resolution
(512× 512) feature maps, then underwent six encode modules successively, outputting down-
sampling features in each encode module. In the last encode module (EM6), 8× 8 highly semantic
features were obtained. Six one-to-one scale-level matching decode modules composed the
decoder of the model, corresponding to each encode module. These decode modules accepted
multi-scale inputs acquired from encode modules above (described in detail in section 3.2.2).
Decode modules recovered the original image resolution step by step, from 8× 8 features to
512× 512 maps. In the last step, the end module generated maps with probability of prediction
of struts. The whole architecture was U-shape-like connected (as shown in Fig. 1(B) structure),
similar to U-Net by Ronneberger et al. [32].

3.2.2. Multi-scale shortcut connection

In processes of features extraction, together with resolution down-sampling, image spatial
information gets gradually lost, thus the contour or shape of the target segmentation will not be
as good as expected, though with high scoring in some metrics. Shortcut connections adopted
in U-Net and RefineNet are aimed at addressing this flaw by bridging the low spatial features
from encode modules with high semantic features from decode modules and combine them
in concatenating or summing manner [32,40]. As a result, the lost spatial information can be
retrieved again along with recovering the resolution and the shape of the prediction map can be
refined. However, unlike medical image segmentation with relatively larger targets (e.g. tumor or
ventricle segmentation), stent struts are an extremely tiny target with regular shape. The loss of
spatial information may affect more the segmentation of so small targets, as some details may
vanish in the pooling process. Therefore, the requirement for fine-grained boundary in small
targets is stricter.

As a consequence, shortcut connections from one single scale features in one encode module
might not suffice to maintain enough spatial information. To overcome this problem, Yu et al.
proposed the method of deep layer aggregation to combine iteratively and hierarchically more
scale-level features [41]. Our method of aggregation, conversely, connected multi-scale features
directly from all encode modules with lower feature level than the current decode level, on a
concatenating way, shown as the connection between left and right sides of our model structure
in Fig. 1(B).
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3.2.3. Input of pseudo-3D images to aggregate the context of adjacent cross-sections

Metallic stents in a coronary artery are 3D targets with specific structural design, (Fig. 2, showing
a Xience stent, Abbott). For each single cross-section in an IVOCT sequence, the spatial and
semantic information are both correlated with adjacent cross-sections for consistency of stent
structures. Our method incorporates the consistency of adjacent frames to refine and restrain the
segmentation results, especially in case of uncertain or ambiguous struts. It is common practice
among expert cardiologists to check the preceding and subsequent frames to aid the interpretation
of challenging images, including equivocal struts. Nevertheless, combining the whole stent
segments as a 3D volume can challenge the computation capacity. Most metallic stent platforms,
however, are designed as repetition of short modular elements along their longitudinal axis.
These short modular elements correspond to a stack of consecutive cross-sections in the IVOCT
pullback, dubbed pseudo-3D image. Input from pseudo-3D images, combining n adjacent slices,
is enough to aggregate adjacent context. For computation, a multi-channels input feeds the model
as shown in Fig. 1(A), and the slice for segmentation is the medium one.

Fig. 2. The metallic stents are often composed of several repeating modular elements
(as shown like the real stent structure of Xience, Abbott Inc. and red box outlines its
repeating stent element), corresponding to the consecutive IVOCT slices in IVOCT pullbacks
(pseudo-3D images).

3.2.4. Training strategy

To enlarge the training dataset and avoid overfitting in the training process, some data argumenta-
tions were adopted. We randomly flipped part of images in horizontal direction with a probability
of 0.5 and translated the image in a random extent limited in the range of -10% to 10% of image
size. Besides, random grey-scale transform was adopted as well. In the process of model training,
we randomly divided the 10,417 cross-sectional images into training set and validation set, in a
proportion of 8 to 2, and trained the model for 300 epochs and optimised parameters with Adam
optimiser.
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We designed a joint loss composed by binary cross entropy (BCE) loss and Tversky loss. The
BCE loss is frequently used in classification tasks, calculated as Eq. (1):

lossBCE=
1
N

∑N

i=1
−gilog(pi) − (1 − gi)log(1 − pi) (1)

To optimise the performance of our model in segmentation of struts in so highly unbalanced
data compared to background, Tversky loss was adopted to achieve improved trade-off between
precision and recall (false positive and false negative), which was shown to have good performance
in segmenting extremely tiny lesions in brain MRI images [42]. Tversky loss is calculated as
Eq. (2) and the trade-off is controlled by α and β:

lossTversky(α, β) = 1 -
∑N

i=1 pigi∑N
i=1 pigi + α

∑N
i=1 pi(1 − gi) + β

∑N
i (1 − pi)gi

(2)

Thus, the joint loss is the weighted sum of BCE loss and Tversky loss as Eq. (3):

lossjoint = λ · lossBCE + (1 − λ) · lossTversky (3)

The λ is the proportional weight of two objective functions.

3.3. Postprocessing of the segmentation results

To visualize the stent structure clearly in the original IVOCT images and further reconstruct
the stent in 3D vessels, we projected the polar segmentation result to the original Cartesian
view, restoring the real anatomical structures of stents in the vessels. Instead of converting the
polar outputs to Cartesian images in a pixel-by-pixel manner, we only extracted the position,
orientation and width of each strut segmented in the polar image. Since the bright spot in IVOCT
only represents the leading edge of the adluminal side of the strut, we reconstructed the strut
in the original Cartesian view for a given strut thickness and overlaid the strut mask on the
corresponding strut area in IVOCT images, as shown in Fig. 1(C). Thus, subsequent quantitative
assessment of the results of stent implantation can be performed based on this reconstruction.

4. Experimental methods

To evaluate the performance of our proposed strut segmentation model, the model was imple-
mented in a commercialized software (OctPlus, version 2.0, Pulse Medical Imaging Technology,
Shanghai, China) for testing of its effectiveness. A serial of testing experiments was designed
in our study. Additionally, correlation and analysis of agreement was performed on some
quantitative parameters related to the stent (like minimal stent area), comparing our model vs.
semi-automatic method using in a commercialized software (QIvus, version 3.1, Medis Medical
Imaging System BV, Leiden, The Netherlands), to assess the feasibility of our model for analysis
of routinely acquired IVOCT images.

4.1. Independent testing data and experimental environment

The testing process was performed on an independent IVOCT dataset from the DOCTORS clinical
trial [33]. These data were collected from multinational centres, totally independent from the
training set. The DOCTORS trial included 120 patients with IVOCT performed immediately after
stent implantation [33]. After excluding pullbacks of unacceptable image quality due to NURD
or insufficient blood flushing, a total of 153 IVOCT pullbacks, with 187,068 struts from 19,494
cross-sectional images were analysed in the current study. The struts were manually labelled
by two trained analysts using the ITK-SNAP software. In case of disagreement, an experienced
cardiologist acted as referee to make a final decision. Finally, seventeen additional follow-up
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IVOCT pullbacks (1,869 cross-sectional images, 18,445 struts) from the CardHemo core lab were
included to validate the performance of our model on detecting struts after neointimalisation (the
struts were labelled manually). The experimental environment was under the platform of Intel
i5-7500 with 32 GB memory and NVIDIA Geforce RTX2080 graphic card.

4.2. Evaluation of segmentation results by ground truth

The performance of our model was evaluated by means of 5 quantitative metrics comparing
the segmentation results from the model vs. the strut mask ground truth. Dice and Jaccard
coefficients, reflecting the extent of overlap between segmentation result maps and the ground
truth masks pixel-wise, were computed as Eq. (4) and (5):

Dice =
2 · |pred ∩ mask|
|pred | + |mask|

(4)

Jaccard =
| pred ∩ mask |
| pred ∪ mask |

(5)

* pred: Prediction strut map from proposed model; mask: Ground truth strut map
Similar to testing methods adopted in previous works [23,24,26,27], the strut detection was

assessed strut-wise by the following parameters: precision, recall and F1-score, computed as
Eq. (6–8). Precision represents the percentage of correctly detected struts among all predicted
struts, whereas recall reflects the percentage of correctly detected struts among all

Precision(PC) =
TP

TP + FP
(6)

Recall(RC) =
TP

TP + FN
(7)

F1 − Score =
2 · PC · RC
PC + RC

(8)

manually-labelled struts. F1-score is a synthetic index, combining precision and recall in a
mutually restrictive manner.
The intersection over union (IOU) between the region of predicted strut and the region of

manually-labelled strut was calculated, defining a correctly detected strut or true positive (TPs)
as an IOU >50%. Thus, prediction, recall and F1-score can be derived. Since the pullbacks in
our testing set came from eleven different sources, the results were evaluated per pullback instead
of evaluating all unclustered struts as a whole. Subgroup analysis per centre was performed to
validate the generalisability and robustness of our model in images generated from different OCT
imaging systems and operators. An additional subgroup analysis per stent type was performed
in the cases from the clinical site that contributed the greatest number of patients to the testing
dataset. Furthermore, the reconstructed 3D platforms were compared with the real stent structure.
Finally, a final subgroup analysis was performed on challenging cases for automatic detection:
jailing struts over side branches, stent thrombosis, severe stent malapposition, overlapping stents
and stent with residual blood.

4.3. Ablation experiments

The performance of our model for strut detection was compared vs. the conventional features-
based algorithm used in the QIvus software that has been extensively used worldwide in
quantitative evaluation of stent struts by different core labs [26]. Since QIvus only detects
single strut points, Dice and Jaccard coefficients cannot be computed: only precision, recall and
F1-score were calculated.
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Finally, two additional deep-convolution-based models were designed to elucidate the efficiency
of the key differential components in our model: pseudo-3D image input and multi-scale shortcut
connection. The performance of the whole model was compared vs. U-Net, as basic U-Net, and vs.
ResU-Net with pseudo-3D image input but without multiscale shortcut connection, as pseudo-3D
ResU-Net, using the same 5 metrics described in section 4.2. All models were designed with
the same depth (same number of encoders and decoders), the same basic channels and were
trained with the same dataset and the same training strategy. The conventional features-based
algorithm and the three deep-convolution-based models were tested on the same testing set
described in section 4.1, with 170 pullbacks in total. A prespecified subgroup analysis comparing
the performance immediately post-PCI vs. that at follow-up was also performed.

4.4. Correlation and agreement between the model and QIvus in quantitative parame-
ters

The quantitative assessment of an implanted stent comprises several parameters in the analysis per
cross-section, likeminimumstent area (MSA) and average stent area (ASA), and several parameters
in the analysis per strut, like malapposition distance and coverage thickness. Underexpansion and
malapposition can be defined after these quantitative parameters, so the cardiologist can estimate
the risk for restenosis or thrombosis and adjust the therapy accordingly [43]. Semi-automatic
measurements obtained with QIvus software were used as reference standard for the analysis of
agreement in quantitative parameters. MSA and ASA were compared in 169 pullbacks, after
excluding one case due to abnormal lumen shape; Malapposition distance was assessed in 28
pullbacks with 1,841 malapposed struts and coverage thickness in 17 follow-up pullbacks with
1,602 covered struts with a neointima thickness >0.05mm by visual estimation. The quantitative
parameters were calculated by our segmentation model as follows:
(1) malapposition distance and coverage thickness:
The lumen contour was automatically delineated [44]. Malapposition distance was then

calculated as the distance between the strut centre and the lumen contour, following a straight
line connecting the strut centre with the lumen centre [10,12]. The detachment distance can
be calculated by subtracting half of the strut thickness from the malapposition distance [13]
(Fig. 3(A)). In the case of covered struts, malapposition distance renders a negative value. For
these struts, coverage thickness is calculated as the absolute value of malapposition distance.
(Figure 3(B)).

(2) Stent contour fitting and stent area calculation:
After delineation of each individual strut in the cross-section, an ellipse-fitting algorithm was

used to fit the stent contour. The elliptical stent contours are shown in Fig. 3(A) and Fig. 3(B)
(white curves). Then, stent area per cross-section can be calculated, as MSA and ASA per
pullback can be subsequently derived.
The statistical analysis of quantitative parameters started by a normality test, followed by a

regression analysis, if appropriate, using manual measurements as reference standard. Correlation
was measured by means of Pearson’s correlation coefficient and agreement by means of Bland-
Altman method.

4.5. 3D reconstruction of the stent structure and time required for analysis

The proposed model was integrated into the OctPlus software (PulseMedical Imaging Technology,
Shanghai, China) [44], allowing automated segmentation and reconstruction of the stents in 3D
from IVOCT image pullbacks. The time required for analysis of the stent struts per IVOCT
pullback was measured to assess the feasibility of our model in realistic clinical conditions.
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Fig. 3. (A) Malapposition distance is the distance from the midpoint of the strut to lumen
contour, following a straight line connecting themidpoint of the strut with the centre of gravity
of the vessel. Detachment distance is obtained by subtracting half of the strut thickness from
malapposition distance. (B) In covered struts, the assessment of malapposition distance
renders a negative value. Coverage thickness is defined then as the absolute value of
malapposition distance in covered struts. The stent contour is delineated fitting an ellipse
(white curve in A and B), thus enabling an easy calculation of stent area.

5. Results

5.1. Evaluation of segmentation results vs. ground truth

For segmentation metrics, mean Dice coefficient was 0.907 (SD 0.038) and mean Jaccard
coefficient was 0.838 (SD 0.057). For detection metrics, mean precision was 0.943 (SD 0.036),
mean recall 0.940 (SD 0.039) and mean F1-score 0.936 (SD 0.038). Subgroup analysis per
clinical centre is summarised in Table 1, showing homogeneously excellent performance among
all centres, thus validating the generalisability and robustness of the model throughout different
IVOCT imaging systems and different operators. Considering that the 17 pullbacks from the
core-lab corresponded to stents at follow-up, while the other centres provided stents immediately
post-implantation, the homogeneous performance of both subgroups confirms the validity of the
method for both scenarios.

Thirteen different types of stent were used in clinical centre 1. Results of the subgroup analysis
per stent type are presented in Table 2. Segmentation metrics were homogeneous between
the different stent types, except for the Omega (Boston) and Multilink (Abbott) stents, which
displayed slightly lower segmentation metrics (Dice coefficient 0.876 and 0.867, respectively;
Jaccard coefficient 0.792 and 0.781, respectively). For detection metrics, all stent types showed
homogeneously high precision (>0.910), recall (>0.900) and F1-score (>0.900).
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Table 1. Subgroup analysis per clinical centre (CC)

Clinical Centre Pullback Numbers
Segmentation Metrics Detection Metrics (IOU 0.5)

Dice Jaccard Precision Recall F1-Score

Site 1 92 0.911(0.036) 0.845(0.055) 0.946(0.033) 0.948(0.032) 0.942(0.033)

Site 2 32 0.901(0.047) 0.828(0.068) 0.942(0.036) 0.935(0.056) 0.933(0.048)

Site 3 10 0.897(0.039) 0.824(0.053) 0.927(0.054) 0.929(0.031) 0.920(0.045)

Site 4-11a 19 0.900(0.034) 0.827(0.051) 0.936(0.045) 0.934(0.046) 0.931(0.046)

Core Lab 17 0.907(0.026) 0.841(0.043) 0.946(0.015) 0.919(0.018) 0.926(0.014)

Total 170 0.907(0.038) 0.838(0.057) 0.943(0.036) 0.940(0.039) 0.936(0.038)

aDue to small number of pullbacks from centres 4 to 11, pooled metrics for these centres were calculated

Table 2. Subgroup analysis per stent type in clinical centre 1

Stent type Pullback Numbers
Segmentation Metrics Detection Metrics (IOU 0.5)

Dice Jaccard Precision Recall F1-Score

Taxus Element 10 0.936 0.883 0.964 0.970 0.963

Omega 5 0.876 0.792 0.936 0.928 0.926

Resolute 10 0.912 0.846 0.950 0.956 0.948

Promus Premier 11 0.914 0.849 0.947 0.942 0.940

Pro Kinetic Energy 10 0.893 0.813 0.921 0.928 0.918

Xpedition 15 0.915 0.851 0.947 0.952 0.945

Nobori 8 0.921 0.858 0.953 0.969 0.958

Biomatrix 1 0.907 0.839 0.917 0.932 0.914

Xience prime 10 0.921 0.860 0.960 0.954 0.952

Ultimaster 3 0.936 0.882 0.974 0.966 0.968

Multilink 6 0.867 0.781 0.913 0.909 0.904

REBEL 3 0.925 0.864 0.948 0.945 0.941

Promus Element 1 0.933 0.879 0.939 0.969 0.949

Table 3 presents the subgroup analysis in challenging scenarios, showing similar performance
to the general dataset. The most favourable scenarios were the jailing struts over side-branch
and the overlapping stents, with Dice coefficients 0.917 and 0.922, Jaccard coefficients 0.853
and 0.863, precision 0.949 and 0.956, recall 0.953 and 0.964 and F1-score 0.947 and 0.955,
respectively. Slightly poorer performance was observed in stent thrombosis and severe strut
malapposition, whilst the worst performance was observed in cases with residual blood in the
lumen (Dice 0.895, Jaccard 0.821, precision 0.931, recall 0.937 and F1-score 0.927). Several
examples of strut segmentation in these challenging scenarios are displayed in Fig. 4(C) to
Fig. 4(G), showing pretty accurate segmentation notwithstanding the handicap.

5.2. Ablation experiments

Table 4 shows the performance of the different segmentation methods applied in the testing set.
All deep-convolution-based models outperformed the feature-based algorithm in detection metrics
[26], showing smaller standard deviations. This was also observed in the 153 post-PCI pullbacks,
in which the feature-based algorithm performed sensibly worse than any deep-convolutional
model (precision 0.878, recall 0.841, F1-score 0.848). However, in the 17 pullbacks at follow-up,
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Fig. 4. Strut segmentation in a regular case post-PCI (A) and at follow-up (B). (C-G)
Typical images of strut segmentation in five challenging scenarios: stent over side-branch
(C), stent thrombosis (D), severe malapposition (E), overlapping stents (F) and residual
blood due to incomplete flushing (G). (H-J) Strut detection failures in three cases: coloured
arrows pointing to the missing struts.

Fig. 5. (A) Performance of the different methods in post-PCI cases. All deep-convolutional-
based models outperformed the feature-based algorithm in detecting struts [26], with the
best results obtained by the hereby proposed model, particularly in segmentation. (B)
Performance of the different methods in follow-up cases. The hereby proposed model
outperformed all others methods, especially in segmentation again.

Table 3. Subgroup analysis in challenging scenarios

Challenging Scenarios Pullback
Numbers

Segmentation Metrics Detection Metrics (IOU 0.5)

Dice Jaccard Precision Recall F1-Score

stent over side-branch 74 0.917(0.029) 0.853(0.044) 0.950(0.029) 0.953(0.023) 0.947(0.027)

stent thrombosis 88 0.905(0.040) 0.835(0.059) 0.943(0.032) 0.941(0.038) 0.938(0.036)

severe stent malapposition 28 0.903(0.046) 0.833(0.065) 0.944(0.035) 0.937(0.047) 0.936(0.043)

overlapping stents 12 0.922(0.015) 0.863(0.021) 0.956(0.018) 0.964(0.015) 0.955(0.020)

residual blood 51 0.895(0.036) 0.821(0.053) 0.931(0.037) 0.937(0.038) 0.927(0.038)
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the basic U-Net showed substantially poor performance (Fig. 5(A)), even lower than the feature-
based algorithm. The hereby proposed model showed the best performance of all methods for
follow-up pullbacks (precision 0.946, recall 0.919 and F1-score 0.926) (Fig. 5(B)).

Table 4. Performance of the different segmentation methods used in the testing set

Stent State Methods
Segmentation Metrics Detection Metrics (IOU 0.5)

Dice Jaccard Precision Recall F1-Score

Post-PCI

Feature-based N/A N/A 0.878(0.048) 0.841(0.083) 0.848(0.066)

Basic U-Net 0.839(0.040) 0.729(0.052) 0.938(0.041) 0.929(0.052) 0.928(0.049)

Pseudo-3D ResU-Net 0.880(0.043) 0.794(0.063) 0.947(0.035) 0.931(0.045) 0.933(0.041)

Proposed 0.907(0.039) 0.838(0.058) 0.943(0.037) 0.942(0.040) 0.938(0.040)

Follow-Up

Feature-based N/A N/A 0.889(0.090) 0.866(0.091) 0.871(0.089)

Basic U-Net 0.743(0.027) 0.602(0.032) 0.868(0.033) 0.841(0.038) 0.842(0.036)

Pseudo-3D ResU-Net 0.833(0.019) 0.723(0.027) 0.918(0.025) 0.881(0.022) 0.890(0.020)

Proposed 0.907(0.026) 0.841(0.043) 0.946(0.015) 0.919(0.018) 0.926(0.014)

Total

Feature-based N/A N/A 0.879(0.054) 0.843(0.084) 0.850(0.069)

Based U-Net 0.829(0.048) 0.717(0.063) 0.931(0.046) 0.920(0.057) 0.920(0.054)

Pseudo-3D ResU-Net 0.875(0.044) 0.787(0.064) 0.944(0.035) 0.926(0.046) 0.929(0.041)

Proposed 0.907(0.038) 0.838(0.057) 0.943(0.036) 0.940(0.039) 0.936(0.038)

Regarding the efficiency of the different components of the model, the pseudo-3D ResU-Net
and the proposed model were consistently superior to the basic U-Net in the total dataset and
in all subgroups, thus confirming the efficiency of the basic modules, the input of pseudo-3D
images and the multiscale shortcut connection in the hereby proposed method. Nonetheless, for
analysis immediately post-PCI there was no significant difference in detection metrics between
the pseudo-3D ResU-Net and the proposed model. Still, segmentation metrics were clearly
better in the proposed model than in the pseudo-3D ResU-Net in all subgroups. These results
are reassuring of the efficiency of multi-scale shortcut connections in preserving better spatial
information for final prediction maps. Finally, the hereby proposed model resulted in smaller
standard deviations for strut detection.

5.3. Correlation and agreement between the model and QIvus in quantitative parame-
ters

Our proposed model showed good correlation with QIvus semi-automatic measurements for MSA
(r= 0.95; p< 0.001, Fig. 6(A)) and Bland-Altman analysis showed excellent agreement (95%
limits of agreement -0.07± 1.15 mm2 (Fig. 6(B)). Also for ASA our model showed excellent
correlation (r= 0.99, p< 0.001, Fig. 6(C)) and agreement (95% limits of agreement -0.36± 0.42
mm2) with semi-automatic measurements (Fig. 6(D)).
For parameters at strut-level, excellent correlation and agreement was observed for both

malapposition distance (r= 0.98, p< 0.001, Fig. 6(E); 95% limits of agreement 0.02± 0.05mm,
Fig. 6(F)) and coverage thickness (r= 0.99, p< 0.001, Fig. 6(G); 95% limits of agreement
0.00± 0.05 mm, Fig. 6(H)).

The prespecified subgroup analysis, pooled by clinical centres, showed no heterogeneity in the
agreement, with I2 statistic= 0.00 for all quantitative parameters analysed, suggesting negligible
variability between centres/operators.
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Fig. 6. Correlation and agreement between the model and semi-automatic measurements in
minimal stent area (A-B),average stent area (C-D),malapposition distance (E-F), neointimal
coverage thickness (G-H).
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5.4. 3D reconstruction of stent structure and time required for analysis

Figure 7(A) to Fig. 7(D) show reconstructions of four different types of stent platforms (A.
Resolute, B. Taxus Element, C. Xpedition, D. Pro Kinetic Energy). The characteristic pattern of
each type of stent can be easily recognised. This accurate 3D-rendering can be particularly useful
in some scenarios, like bifurcations (Fig. 7(E), red arrow pointing out side branch) or severely
malapposed struts (Fig. 7(F), green arrow pointing out malapposed struts and the gap between
lumen and stent). The time required for stent detection and segmentation was 0.02 seconds per
cross-sectional images. The average computational time required for 3D reconstruction of an
IVOCT image pullback was 9.22± 2.82 seconds.

Fig. 7. (A-D) Four different types of stent platforms (A. Resolute, B. Taxus Element, C.
Xpedition, D. Pro Kinetic Energy) rendered by our proposed model in 3D visualisation. 3D
visualization of bifurcation stent (E, red arrow) and severely malapposed stent (F, green
arrow).

6. Discussion

In this study we proposed a novel deep convolution model for fully automatic segmentation of stent
struts from IVOCT images. Themodelwas based on the FCNandU-shape architecture [31,32], but
was designed to resolve specific challenges in stent strut segmentation. In particular we designed
four structured modules with residual connection to automatically extract optimal features of
stent strut for segmentation. Furthermore, we adopted pseudo-3D input and multi-scale shortcut
connection for more accurate detection and finer strut contours. A large-scale training dataset
were used to train and finetune our proposed model. The results of testing on the independent,
extensive testing set showed both satisfactory segmentation and detection performance of
the hereby proposed model, and the model outperformed other methods irrespective of the
acquisition timing after stent implantation, especially exceeded the feature-based method by a
big margin, suggesting all proposed steps were effective in improving the accuracy of the strut
detection. In addition, excellent correlation and agreement between the model and semi-automatic
measurements in quantitative parameters including MSA, ASA, malapposition distance, and
coverage thickness were observed.
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Compared with previous studies on automatic detection of stent struts [23,24,26,27,29] that
validated different algorithms on limited number of OCT image pullbacks with a few thousands
struts, the current study collected a sizable sample of data, merging 153 post-PCI IVOCT
pullbacks from the DOCTORS clinical trial [33] and 17 follow-up pullbacks from the core lab,
resulting in 21,363 cross-sectional images with 205,513 struts for independent testing. This
extensive and comprehensive dataset comprised most real clinical and anatomical scenarios of
IVOCT imaging, including both high and low image quality, with various artefacts increasing the
difficulty for a correct detection of struts. Very high segmentation accuracy was obtained with
the hereby proposed model, with a Dice coefficient of 0.907 and a Jaccard coefficient of 0.839.
The Dice coefficient value over 0.9 indicates a high overlapping extent of the segmented strut and
the corresponding labels under a strict pixel-wise standard. Similar to previous studies in the
field, precision, recall and F1-score were calculated strut-wise as detection metrics. Although
the differences in sample size preclude a direct comparison with previous studies, a precision of
0.943, a recall of 0.940 and an F1-score of 0.936 compare quite well with the results from prior
approaches and validate our deep convolution model. Moreover, the model is robust and reliable
throughout different IVOCT systems and different operators, as suggested by the homogeneity in
the subgroup analysis per clinical centre.
Likewise, the subgroup analysis per type of stent also suggested that the model was scarcely

influenced by the type of stent, with consistent and homogeneous results in most stent types.
Nonetheless, the performance in the Omega and Multilink stents was slightly but intriguingly
lower than in other stent platforms. Oddly curious was the differential metrics between the
Multilink and the Xience stents, because both stent types share exactly the same stent platform,
only differing in the polymer and drug coating (present in Xience and absent in Multilink). The
pullbacks corresponding to these two kinds of stents were purposely reanalysed in search for
potential causes of poorer performance, founding some cases affected by artefacts of incomplete
flushing or thrombotic clots. In the case of the Multilink stent, we observed a distinctly lower
brightness of severely malapposed struts or struts jailing side-branches, precluding an accurate
recognition of the strut. In these cases, our model might fail to detect the struts or they might
be deleted in the post-processing, due to the low probability in the strut maps (Fig. 4(H) and
Fig. 4(J)). Notwithstanding this consideration and in absence of dedicated studies to elucidate
this finding, the subgroup analysis of challenging scenarios for accurate strut detection resulted
in overall excellent performance of the model under the most adverse conditions, including
severe malapposition, jailing struts over side-branches, presence of intraluminal thrombi or
overlapping stents. The challenge in jailing, malapposed or overlapping struts stems from the
dissimilar appearance of the strut or of its anatomical context as compared with regular struts.
This problem can be easily overcome in a deep convolution model by providing enough typical
images for model training. Nonetheless, in cases with residual blood due to incomplete flushing,
the likelihood of detection failure is higher than in other scenarios and lower evaluation metrics
were observed (Table 3). This finding is consistent with previous studies on the topic and can
be easily explained because the residual blood affects the overall quality of the image and it
is more difficult to overcome by providing enough training to the model. It simply depends
on the extent at which quality is deteriorated by the artefact. Indeed, in cases with residual
blood, weakening the signal but still allowing the recognition of structures, the model performed
reasonably well, as in the example shown in Fig. 4(G). Conversely, when the presence of residual
blood eclipsed the image formation, preventing adequate recognition of anatomical structures,
the model failed (Fig. 4(I)), with no room for improvement and no chance for training, because
the model cannot extract information which was not acquired and is hence missing. Our results
suggest that image quality itself influences the performance of the model more than irregular
features with acceptable image quality.
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All deep convolutional models outperformed the conventional feature-based algorithm that
was implemented in the commercialized QIvus software in all segmentation and detection
metrics. These results indicate that the features automatically extracted by deep convolutional
models are more discriminating and comprehensive than conventional fixed features, therefore
the detection results based on the former are more accurate and robust than those based on
the latter. Still some nuances must be explained depending on whether IVOCT images were
acquired immediately post-PCI or at follow-up. While in post-PCI images all deep-convolutional
models performed better than the conventional feature-based algorithm, in follow-up cases the
conventional feature-based algorithm was even better than the basic U-Net model (precision
0.889 vs. 0.868, recall 0.866 vs. 0.841 and F1-score 0.871 vs. 0.842, respectively). This
might be explained because the vast majority of images in the training dataset were post-PCI
and only a few were follow-up images. Thus, the basic model, requiring more data for adequate
training, would have accused the effect of insufficient training data more than the Pseudo-3D
ResU-Net model and our proposed model, both designed in four modules and with pseudo-3D
input, conferring them greater net capacity and more information for strut prediction, thus being
less dependent on training data feeding. Interestingly, the hereby proposed model showed no
significant superiority to the Pseudo-3D ResU-Net model for detection performance in post-PCI
cases, but it demonstrated a clear advantage in follow-up cases, which are more challenging and
demanding than the analysis immediately post-PCI. Furthermore, our proposed model obtained
the highest metrics in segmentation performance irrespective of the moment when the pullback
was acquired, suggesting the efficiency of the multi-scale shortcut connection hereby adopted,
enabling the generation of finer strut contours. In some cases where two struts were close to each
other, the intermediate model tended to segment them as a long single strut, while our proposed
model discriminated them as two different struts. This may be attributed to the multi-scale
shortcut connection, rendering more accurate struts recognition and stent contour fitting.

Unlike previous studies calculating correlation and agreement on stent area at the cross-section
level [24], our study analysed minimum stent area and average stent area per pullback. This
approach is more sensitive to potential inaccuracies and it is therefore more demanding than
the analysis at cross-section level to obtain high correlation and agreement. A single mistake
in only one frame due to incorrect strut detection may result in a wrong MSA of the pullback,
having bigger impact on correlation and agreement than in the analysis per cross-section, where
the error gets diluted in a myriad of frame measurements. The hereby proposed model showed
excellent correlation and agreement with manual measurements on MSA, with no significant
bias in Bland-Altman plots. The correlation on MSA (r= 0.95) was slightly lower than on ASA
(r= 0.99), probably reflecting the higher sensitivity of MSA to potential inaccuracies, because it
is a parameter depending on a single summary cross-section, while ASA averages the stent areas
throughout the pullback, thus buffering the impact of sporadic errors. The excellent agreement on
stent area calculation is utmost relevant for clinical applications, because accurate calculation of
stent areas is the basis for the assessment of stent expansion, defined as the relation between stent
area and reference vessel area [11]. Underexpansion has been associated with stent restenosis
[15–19] and with stent thrombosis [20], therefore its reliable assessment will be instrumental for
OCT-guided PCI and for the appraisal of stent failure cases.

The Tversky loss we used to train our model can be regarded as a kind of generalized version
of Dice loss that is often used in segmentation tasks. For segmentation of stent strut, the target
is tiny compared to targets like lumen or plaque, and at the same time, there can be many
targets in single slice. Thus, the balance between precision and recall can be hard to reach. The
hyper-parameter Alpha the Tversky loss brings can control the precision and recall. At the angle
of hyper-parameters fine-tune, Tversky loss promotes to reach to a precision-recall balance and
optimized model parameters.
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Although the overall performance in the 17 follow-up cases was also excellent, follow-up
images represented only a small proportion of the testing dataset. This uneven distribution might
have affected the assessment of coverage thickness and the binary detection of covered/uncovered
struts, because coverage is exclusively assessed at follow-up. As a consequence, the hereby
reported results might not reflect the true performance of our model in detecting covered struts.
Our results should be confirmed in future studies, specifically focused on follow-up datasets. It
cannot be excluded that the performance would increase when increasing the number of follow-up
data in the training or using more dedicated networks.

The poor performance of the model due to suboptimal quality of the images is often caused by
unclear features of the strut or of the dark trailing shadows. In the cases of detection failure in
the testing dataset, the model was more sensitive to problems with the strut than to problems
with the trailing shadow. If the signal of the strut is simply too weak, even if the trailing shadow
is totally missing, the model learns to detect correctly the struts. Nevertheless, in absence of the
bright signal of the strut, the likelihood of detection failure of the strut increases substantially,
irrespective of the presence of a typically casted shadow. This caveat of our model raises
some concerns regarding the assessment of covered struts, in which the bright of the strut fades
substantially as compared with the images post-PCI, until practically disappearing in some cases.
The dark shadow is often the only landmark pointing out the presence of a covered strut and
such cases can be disregarded by the current model (Fig. 4(J)). Following a deep convolutional
architecture, our model extracts features automatically according to the label given, with no
further human intervention or feedback. An additional supervision level on feature extraction,
weighting the casted shadows properly, might improve the accuracy of the current model and
should be considered in future upgrades and studies.
The current training process combined 7 adjacent slices in pseudo-3D input, as the context

along the z-axis. The number of adjacent slices was arbitrarily chosen andmight not be necessarily
the optimal number or might be inappropriate for some types of stent. Actually, the adaptive
selection of the optimal number of adjacent slices, depending on different scenarios, deserves to
be considered in future algorithms, as it might improve the efficiency of the model. The guidewire
casts often a shadow over a random sector of the cross-section, hiding the struts behind and
rendering a dark gap in the 3D reconstruction of the stent structure. The virtual reconstruction of
this invisible sector of the stent by extrapolation methods might be subject of further research in
the future.
This analysis time is short enough to encourage the application of our model routinely in

the cathlab, making IVOCT guidance of PCI feasible for real-time decision-making in realistic
conditions. The combination of accurate morphoanatomical details and coronary physiology
[44,45] offers the most comprehensive and precise collection of information currently available
to guide the optimisation of coronary interventions. Accurate and prompt detection of stent struts
enables the assessment of expansion and apposition, thus providing the cardiologist with unique
information to minimise the risks of stent failure, while OCT-based FFR (OFR) estimates the
functional impact of the intervention on coronary physiology [44,45]. The synthesis of all this
information will be also instrumental for precision PCI and for the personalised treatment of
cases of stent failure.

7. Conclusion

A fully-automatic, deep convolutional segmentation model for detection of struts in metallic
stents was hereby designed. Contrary to conventional features-based methods, our model
extracted optimal features automatically from a huge number of training data. The model was
subsequently validated on a large-scale testing dataset stemming from multiple clinical centres,
with excellent results. All proposed steps in the model proved efficiency to improve the accuracy
of the strut detection: 1) deep-convolutional models outperformed conventional features-based
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algorithm, thus proving the superiority of comprehensive features automatically extracted on a
deep-convolutional approach; 2) deep-convolutional models with pseudo-3D input outperformed
the basic deep-convolutional model without it, thus confirming the efficiency of pseudo-3D
input to aggregate consecutive information and improve the detection accuracy; 3) the hereby
proposed model, with multi-scale shortcut connection, outperformed other deep-convolutional
models without it, resulting in finer and more precise segmentation contours and confirming the
advantage of multi-scale shortcut connection. The excellent agreement between the model and
semi-automatic measurements in quantitative parameters, together with the short time required
for analysis, suggests the feasibility of the method for routine stent assessment in the cathlab to
guide clinical decision-making.
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